Принцип работы и назначение транзистора

Транзистор Транзистор, иначе называемый полупроводниковым триодом — электронное устройство, основой которого являются полупроводниковые материалы. Основное назначение прибора — возможность, с помощью изменения слабого тока в управляющей цепи, получать усиленный сигнал на выходе. Полупроводниковый триод — одна из основных составляющих схем множества электронных устройств, от радиоприёмника до компьютера.

Типы транзисторов

Определение «транзистор» тесно связано с этимологией этого слова. Оно образовано от двух английских слов: transfer (переносить) и resistor (сопротивление). Действительно, принцип работы устройства связан с переносом (изменением) сопротивления в электрической цепи.

Существуют два основных класса полупроводниковых триодов:

  • биполярные;
  • полевые (униполярные).

Каждый класс, в свою очередь, делится на несколько разновидностей.

Биполярные:

  • Виды транзисторовp-n-p тип (прямая проводимость);
  • n-p-n тип (обратная проводимость).

Оба этих типа триодов могут использоваться в одной электронной схеме. Поэтому, для того чтобы не перепутать, какую именно деталь надо использовать в конкретном месте схемы, изображения p-n-p и n-p-n триодов отличаются друг от друга.

Полевые:

  • униполярные с p-n переходом;
  • МДП-транзисторы с изолированным затвором.

Принцип работы устройства

В электронике применяются полупроводники с электронной (n) или дырочной (p) проводимостью. Эти обозначения говорят о том, что в первом случае в полупроводнике преобладают отрицательно заряженные электроны, во втором — положительно заряженные дырки.

Рассмотрим, как устроен транзистор на примере биполярного полупроводникового триода. Внешне прибор выглядит как небольшая деталь в металлическом или пластиковом корпусе с тремя выводами. Внутри — своеобразный бутерброд из трёх слоёв полупроводника. Если центральный слой p-типа, то окружающие его слои — n-типа. Получается триод n-p-n. Если же центр, именуемый также базой, n-типа, то обкладки — из полупроводника с дырочной проводимостью, а структура устройства — p-n-p. Один из внешних слоёв называется эмиттером, другой коллектором. К каждой из этих трёх частей прибора бывает подведён соответствующий вывод.

Как выглядит транзисторКраткое пояснение, как работает транзистор, для «чайников» выглядит так. Возьмём для примера транзистор n-p-n, где эмиттер и коллектор являются слоями с преимущественно электронной проводимостью, а база — с дырочной.

Подключаем эмиттер к отрицательному выводу электрической батареи, а базу и коллектор — к положительному. Начинающему любителю электроники можно представить, что триод состоит из двух диодов, причём диод эмиттер — база включён в прямом направлении, и через него протекает ток, а диод база — коллектор включён в обратном направлении, и ток отсутствует.

Предположим, что мы включили в цепь базы переменный резистор, с помощью которого можем регулировать подаваемое на базу напряжение. Какой эффект мы получим при уменьшении напряжения до нуля? Ток в цепи эмиттер-база перестанет течь. Немного увеличим напряжение. Электроны из n — области эмиттера устремятся к базе, подключённой к плюсу батареи.

Важная деталь — база сделана максимально тонкой. Поэтому масса электронов проходит этот слой насквозь и оказывается в коллекторе под воздействием положительного полюса батареи, к которому притягивается. Таким образом, ток начинает проходить не только между эмиттером и базой, но и между эмиттером и коллектором. При этом ток коллектора значительно больше тока базы.

Ещё одно важное обстоятельство: небольшое изменение базового тока вызывает значительно более сильное изменение коллекторного тока. Таким образом, полупроводниковый триод служит для усиления различных сигналов. Обычно биполярные триоды чаще используются в аналоговой технике.

Полевые транзисторы

Этот тип триода отличается от биполярного не свойствами или функциями, а принципом работы. В полевом триоде ток движется от вывода, называемого истоком, к выводу, именуемому стоком, по полупроводнику одного вида проводимости, например, p. А управление силой этого тока производится с помощью изменения напряжения на третьем выводе — затворе.

Такая структура более точно отвечает требованиям современной цифровой техники, где в основном и применяются полевые триоды. Сегодняшние технологические возможности позволяют разместить на кристалле полупроводника площадью 1−2 квадратных сантиметров несколько миллиардов МДП-элементов с изолированным затвором. Таким образом создаются центральные процессоры персональных компьютеров.

Перспективы развития приборов

Перспективы лежат, в первую очередь, в сфере дальнейшей миниатюризации устройств. Так, американские учёные разрабатывают сегодня так называемый одномолекулярный транзистор. Основным элементом такого устройства является молекула бензола, к которой присоединены три электрода.

Если идея оправдает себя, появится возможность создания сверхмощных вычислительных комплексов. Ведь размер молекулы гораздо меньше размера сегодняшних МДП-триодов на кристалле кремниевого чипа.

Adblock detector