Технология плазменной и газоплазменной резки металла

Плазменная резка металла - описаниеТехнология плазменной резки широко используется при обработке тугоплавких токопроводящих металлов. Разрезание материала происходит при помощи плазмы, которая создается ионизированным газом, что и позволяет обеспечить максимальную производительность проводимых работ. Используемые сегодня станки для плазменной резки позволяют обеспечить максимально возможное качество такой работы, при этом имеется возможность обработки тугоплавких металлов, которые сложно разрезать при помощи обычных ручных аппаратов.

Используемые сегодня установки для резки плазмой отличаются компактностью конструкции, при этом они управляются электроникой и автоматикой, что позволяет задать программу резки, и в последующем обеспечить ее великолепное качество. В отличие от механических способов разрезания металла плазмотроны способны работать по любым рисункам, при этом существенно уменьшается деформация поверхности, которая вызвана перегревом.

Имеется возможность использования дополнительных насадок на плазмотроны, что, в свою очередь, защищает сопло от брызг расплавленного материала. А также обеспечивается возможность уменьшения толщины луча плазма, улучшение качества резки и минимизация отходов.

Принцип работы плазмореза

Резка металла плазмой основана на принципе усиления электрической дуги за счёт разгона газа, который выдвигается из сопла под высоким давлением. Такая усиленная электрическая дуга и пропущенный через неё газ создает плазму, температура которой может достигать 30 000 градусов и выше. Подобная эффективность обеспечивает минимальный прогрев металла, что исключает его деформацию при разрезании.

Принцип работы плазменной резки металла следующий:

  1. Плазменная резка трубТрансформаторные или инверторные установки, а для бытовых моделей используется ток 220 вольт или же 380 вольт для мощного промышленного оборудование, выдают необходимое напряжение.
  2. Используемый ток передается в горелку плазмотрона, в которой друг против друга располагаются анод и катод. Между этими электродами загорается мощная электрическая дуга.
  3. В сопло из воздушного компрессора подается газ, повышающий температуру дуги приблизительно до 20 000 градусов.
  4. Под воздействием электрической дуги используемый газ ионизируется, превращаясь в струю плазмы с температурой в 30 000 градусов.

Плазменная струя отличается ярким свечением, скорость ее выхода из сопла составляет приблизительно 1500 метров в секунду, а за счёт высокой теплопроводности она может с легкостью разрезать металл. Металл разогревается локально и его расплавление отмечается лишь в зоне обработки без термической деформации близлежащих участков.

В зависимости от используемого оборудования и конкретных условий обработки материалов может использоваться следующий газ:

  • Аргон.
  • Водород.
  • Азот.
  • Технический кислород.
  • Обычный воздух.

Для повышения качества резки металла необходимо удалять из зоны обработки расплавленные частицы и охлаждать сопло оборудования. Для этого в рабочую зону подается дополнительный поток жидкости или газа, что позволяет обеспечить полную работоспособность оборудования.

Современные установки для плазменной резки

Наибольшее распространение сегодня получили аппараты газоплазменной резки с компьютерным управлением, которые используются на предприятиях в различных отраслях промышленности. С помощью таких установок может разрезаться плазмой не только тугоплавкий металл, но и натуральный камень, пластик и другие материалы. Плазменная резка металла - описание технологииБлагодаря своей универсальности такое оборудование широко используется на ремонтных и рекламных предприятиях, судостроительных и машиностроительных заводах, в коммунальной сфере и так далее.

Также широкое распространение получили компактные установки плазменной резки, которые отличаются мобильностью, что позволяет с легкостью переносить с места на место такое оборудование и при необходимости выполнять соответствующую резку металла. Такие компактные установки могут быть как полностью ручными, так и полуавтоматами, где часть работ контролируется компьютером.

На сегодняшний день наибольшее распространение получили два типа аппаратов плазменной резки:

  • Прямого действия, в которых резка плазмой осуществляется контактным способом.
  • Плазморезки косвенного действия, которые работают бесконтактным способом.

Контактные аппараты прямого действия используются в бытовых целях, они сочетают компактность и простоту эксплуатации. А вот установки косвенного действия, как правило, управляются автоматикой и отличаются сложностью конструкции.

Большой популярностью пользуются плазменные резаки, в которых электроток получается за счет использования соответствующего инвертора с компактными габаритами. Рабочий ток от инвертора отличается не только необходимой мощности, но и имеет ровные параметры, соответственно обеспечивается великолепное качество разрезания металла.

Бытовые ручные аппараты для воздушно-плазменной резки сочетают универсальность использования и способны с легкостью работать с металлами толщиной до 12 миллиметров. А вот промышленные установки могут работать от одного или нескольких инверторов, что позволяет применять их для разрезания металлических изделий толщиной в 20−30 миллиметров и более. Отдельные промышленные установки благодаря своей улучшенной мощности способны с легкостью разрезать металл толщиной 100 миллиметров.

Преимущества технологии плазменной резки

Если говорить о преимуществах данной технологии обработки металла, то можем отметить следующее:

  • Технология плазменной и газоплазменной резки металлаВысокая точность разрезания металла.
  • Возможность выполнения фигурной формы реза.
  • Простота рабочего процесса.
  • Отличная скорость проводимых работ.
  • Возможность работы с металлами, которые не проводят металлический ток.
  • С помощью плазмореза можно работать с металлом, пластиком, камнем.
  • Мобильность оборудование.
  • Безопасность сварщика ввиду отсутствия необходимости использования газовых баллонов.
  • Минимальное загрязнение окружающей среды.
  • Не требуется в последующем обрабатывать разрезанные поверхности.

Изобретение технологии резки плазмой позволило существенно упростить работу с легированной сталью. Благодаря глубокой степени автоматизации такого оборудования удаётся выполнять изогнутые линии, а весь производственный процесс максимально автоматизирован. Причём использование таких плазморезов не представляет какой-либо сложности и минимизирует время, необходимое на обучение работе с таким оборудованием.

Adblock detector